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Abstract

A novel measure of the Autoregressive Causal Relation based on a multivariate autoregressive model is proposed. It reveals the

strength of the connections among a simultaneous time series and also the direction of the information flow. It is defined in

the frequency domain, similar to the formerly published methods such as: Directed Transfer Function, Direct Directed Transfer

Function, Partial Directed Coherence, and Generalized Partial Directed Coherence. Compared to the Granger causality concept,

frequency decomposition extends the possibility to reveal the frequency rhythms participating on the information flow in causal

relations.

The Autoregressive Causal Relation decomposes diagonal elements of a spectral matrix and enables a user to distinguish between

direct and indirect causal relations. The main advantage lies in its definition using power spectral densities, thus allowing for a clear

interpretation of strength of causal relation in meaningful physical terms.

The causal measures can be used in neuroscience applications like the analysis of underlying structures of brain connectivity

in neural multichannel time series during different tasks measured via electroencephalography or functional magnetic resonance

imaging, or other areas using the multivariate autoregressive models for causality modeling like econometrics or atmospheric

physics but this paper is focused on theoretical aspects and model data examples in order to illustrate a behavior of methods in

known situations.

Keywords: Autoregressive processes, Frequency domain analysis, Brain modeling, Electroencephalography.

1. Introduction

Causal relations analysis is an important task for revealing

connections among simultaneous time series as it identifies not

only the strength of the relations but also the direction of the

information flow.

This paper is focused on methods based on multivariate au-

toregressive (MVAR) models [1]. Once suitable model parame-

ters are fitted to the data, the methods try to estimate the causal

connections from these model parameters. There are many

other alternative approaches to causal relations analysis, such

as the concept of graphical models enabling one to distinguish

between direct and indirect connections in the time series [2, 3],

the concept of Transfer entropy [4], Dynamic Causal Model-

ing [5, 6, 7] featuring biophysical modeling using differential

equations and Bayesian statistical methods for parameter es-

timation, Structural Equation Modeling [8], Phase Dynamics

[9, 10], Phase Slope Index [11, 12], maximum likelihood mod-

els [13], etc. However, the key feature of MVAR model tech-

niques is that it is very general, mathematically well-founded

and it covers many of the most common interdependences. The

natural multichannel approach allows for an analysis of the di-

rect and indirect causal paths, and it is able to model bidirec-

tional causal relations.

The Granger causality technique is frequently used for causal

relation analysis in MVAR models [14]. The original Granger

causality concept [15] reveals whether a knowledge of past val-

ues of one variable (source variable) helps to predict the current

value of another variable (target variable). This approach is

based only on a bivariate pairwise test classifying the strength

of the causal connection by one real non-negative number in

one direction (see Fig. 1a). The MVAR model is fitted to the

time series and if the variance of the residual prediction error of

the target variable is lower in the case where the previous val-

ues of the source variable are included into the model, then we

say the source variable causes the target variable. This concept

was primarily used in econometrics for identifying underlying

structures of a time series such as livestock prices [16].

If the data contains more time series, two problems may ap-

pear. The first problem, a sequential driving, occurs when the

causal connection from the first to the second variable is com-

pletely mediated via the third variable (see Fig. 1b). In this

case, a pairwise test will also detect an indirect causal rela-

tion from the first to the second because it cannot distinguish

between the direct and indirect connections. The second prob-

lem, a different delay driving, occurs when the first variable

drives both the second and the third variable, but the driving

of the second variable has a smaller delay than the driving of

the third one (see Fig. 1c). Then, samples of the second vari-
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Figure 1: Typical properties of causality analysis. (a) Bidirectional connection

evaluated via Granger causality with source variable 1 and target variable 2,

giving causal strength F2←1 . The analysis with source variable 2 and target

variable 1 gives another result F1←2 as the causal relations are asymmetric, i.e.,

directional. (b) The sequential driving problem should be detected as direct

causal relations 3 ← 1 and 2 ← 3 however some methods also detect the false

indirect 2 ← 1. (c) Different delay driving should be detected as direct causal

relations 2← 1 and 3← 1 however some methods also detect the false indirect

3 ← 2 as 2 contains some information which can help to predict future values

of 3 (the z-domain delay represents the causal connection delay).

able contain information which helps predict future samples of

the third variable. A pairwise method detects a causal relation

from the second to the third variable and cannot distinguish that

this is an indirect one. Both problems with indirect connections

were solved via a multivariate extension, referred to as Condi-

tional Granger causality [17]. The Conditional Granger causal-

ity works with MVAR model which includes all the time series

in order to find the direct connections and recognize and elimi-

nate the indirect ones.

In recent years, spectral analysis of neurophysiological data

[18], such as functional magnetic resonance imaging, magne-

toencephalography or electroencephalography have played an

important role. To extend the basic spectral approaches, ad-

vanced techniques based on MVAR models have been used

for analyzing causal connections among brain structures. The

common character of these applications is to find which fre-

quency rhythms participate in the causal connection. A num-

ber of methods for frequency decomposition have been pub-

lished, with their main focus being on the analysis of the fre-

quency rhythms participating in the information transfer. How-

ever, only a few of the methods claim to be able to distinguish

between the direct and indirect connections.

Several selected methods enabling one to distinguish be-

tween the direct and indirect connections will be described. The

Directed Transfer Function (DTF) [19, 20] is able to decompose

the causal relations in the frequency domain but does not dis-

tinguish the direct connections from the indirect ones. The Par-

tial Directed Coherence (PDC) [21, 22] solves this problem by

only recognizing the direct connections, but uses a normaliza-

tion that causes the inability to compare the strength of the cou-

pling among variables. A lower value of the PDC may instead

correspond to a stronger relation [23]. The Direct Directed

Transfer Function (dDTF) [24, 25, 22, 26, 27] claims to im-

prove the DTF in order to distinguish the indirect connections.

A straightforward frequency transform of the Granger causal-

ity (originally by Geweke [28]) leads to problems when utiliz-

ing three variables, such as the occasional occurence of nega-

tive values which have no meaning in terms of causality. [29]

applied a partition matrix technique to overcome the problem.

However, this method is limited to three variables only. The

Generalized Partial Directed Coherence (GPDC) [23, 30, 31]

modifies the PDC using additional normalization to make the

values more comparable. Another method, Renormalized PDC

[32] provides similar outcomes as GPDC.

1.1. Problems with interpretation; new approach

Although all these methods claim to distinguish between di-

rect and indirect causal connections in the frequency domain,

the definitions and, consequently, interpretation of the results

vary. [33] states: “Unfavorable feature of PDC is its weak de-

pendence on frequency (practically ‘flat’ spectrum), which does

not permit to distinguish well the role of different rhythms.” and

“DTF detects not only direct but also indirect flows. This fea-

ture may be important when estimating transmissions from im-

planted or subdural electrodes. However in these cases Direct

Directed Transfer Function which combines DTF with partial

coherence, may be used.” The dDTF is described by [24]: “The

maxima of dDTF may better (in comparison to DTF) reflect a

frequency of rhythm being a carrier for information flow.” The

GPDC is explained by [30]: “The square modulus of GPDC

value from jth time series by ith series can be understood in-

tuitively as the proportion of the power spectra of the jth time

series, which is sent to the ith series considering the effects of

the other series.” In Section 3, it is shown that this statement is

not accurate and the newly proposed Autoregressive Causal Re-

lation (ACR) that uses the power spectral density (PSD) is the

same as the square modulus of GPDC only in the case of two

variables with one unidirectional causal relation. [34] specifies:

“GPDC determines the correct interaction structure in terms of

direct causal effects, but its absolute values lack of straightfor-

ward interpretability.” [35] mentions a possibility of mislead-

ing results of PDC, GPDC, and dDTF methods. [36] summa-

rizes: “Comparing the DTF, PDC and their derivatives, which

of these measures is the most advantageous and accurate is still

an open question.”

The aim of the ACR method proposed in this paper is to try

to bring an unambiguous definition of causal relation in the fre-

quency domain based on multivariate autoregressive models,

with a clear PSD interpretation defined as a ratio of the PSD

of the incoming causal component to the total PSD of the target

variable.

The ACR method agrees with the concept of the suggested

criteria in [37] and brings an idea how to calculate each causal

component from coefficients of a general MVAR model con-

taining multiple causal relations including the bidirectional

ones.

2. Definitions

2.1. Multivariate autoregressive model

Let us consider an MVAR process consisting of k real num-

ber stationary variables with zero means (e.g., corresponding to

particular simultaneous channels)

X (t) = (X1 (t) , X2 (t) , . . . , Xk (t))T (1)
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where t stands for the sample index in a discrete-time domain.

Considering an unpredictable component of the model defined

as a vector of mutually uncorrelated white Gaussian noises

E (t) = (ε1 (t) , ε2 (t) , . . . , εk (t))T (2)

with zero means and variances σ2
1
, σ2

2
, . . . , σ2

k
respectively, the

generating equations of the MVAR process of the order of p are

Xi (t) = εi (t)+

+ ai1 (1) X1 (t − 1) + · · · + aik (1) Xk (t − 1)+

+ · · ·+
+ ai1 (p) X1 (t − p) + · · · + aik (p) Xk (t − p)

(3)

for each i = 1, . . . , k where a are model coefficients (real num-

bers). In this way, the actual sample of each variable is de-

scribed as a summation of Gaussian white noise and a linear

combination of p previous values of every variable. Consider-

ing coefficient matrices

A (n) =

























−a11 (n) · · · −a1k (n)
...

. . .
...

−ak1 (n) · · · −akk (n)

























(4)

for n = 0, . . . , p, where A (0) = I is the identity matrix, the

MVAR model can be written as

p
∑

n=0

A (n) X (t − n) = E (t). (5)

The conversion of (5) into the frequency domain requires the

discrete-time Fourier transform (DTFT). Matrix A (n) can be

transformed as

A ( f ) =

























A11 ( f ) · · · A1k ( f )
...

. . .
...

Ak1 ( f ) · · · Akk ( f )

























(6)

where

Ai j ( f ) = δi j −
p
∑

n=1

ai j (n)e−ι2π f n (7)

for row index i = 1, . . . , k and column index j = 1, . . . , k, where

ι is the imaginary unit and δi j = 1 for i = j, δi j = 0 other-

wise. Since MVAR signals are stationary random processes,

i.e., finite power signals, their discrete-time Fourier transform

(DTFT) does not exist in the usual sense and a spectral measure

needs to be introduced. One can use the Wiener-Khinchin the-

orem [38] stating the PSD of an ergodic wide-sense stationary

random process is the Fourier transform of the corresponding

autocorrelation function.

Although many authors perform the DTFT or z-transform of

(5) with stationary MVAR variables and noises leading to (12)

or corresponding z-transform expression, e.g., [19, 24, 17, 29,

39], the procedure should be clarified.

Let us assume a final-length segment Xwi (t) of one realiza-

tion (sample function) of stationary process Xi (t) containing N

nonzero samples. The DTFT of the segment is Xi ( f ) where

f ∈ [−0.5, 0.5] is the normalized frequency. Then, a peri-

odogram (an estimate of the PSD of the signal) can be intro-

duced [40]

Ŝ ii,N ( f ) =
1

N
|Xi ( f )|2 = 1

N
Xi ( f ) X∗i ( f ) (8)

where ∗ is transposition and complex conjugation (Hermitian

transpose). The PSD of Xi (t) using the Wiener-Khinchin theo-

rem can be expressed as [41]

S ii ( f ) = lim
N→∞

E
[

Ŝ ii,N ( f )
]

(9)

where E denotes an expectation value operator.

In the following equations, speaking about the Fourier trans-

form or z-transform of the stationary processes, the final-length

segments of the signals are assumed and the final expression of

PSD is derived from the periodogram via (9). This approach has

several advantages. The use of Fourier and z-transform instead

of convolutions or correlations leads to more straightforward

expressions. It allows easy interpretation by means of digital

filtering. It is also compatible with the notation used by the

authors of the methods which we are comparing our technique

with.

Under the above stated conditions, using a DTFT vector of

segmented realizations of variables (1)

X ( f ) = (X1 ( f ) , X2 ( f ) , . . . , Xk ( f ))T (10)

and a DTFT vector of corresponding unpredictable (mutually

uncorrelated) components (2)

E ( f ) = (ε1 ( f ) , ε2 ( f ) , . . . , εk ( f ))T , (11)

the DTFT of the MVAR model can be finally expressed as

A ( f ) X ( f ) = E ( f ) . (12)

This equation can be rewritten as [24]

X ( f ) = A−1 ( f ) E ( f ) = H ( f ) E ( f ) (13)

where

H ( f ) =

























H11 ( f ) · · · H1k ( f )
...

. . .
...

Hk1 ( f ) · · · Hkk ( f )

























= A( f )−1 (14)

is the transfer function of the MVAR system. A PSD represen-

tation, commonly referred to as the spectral matrix, is

S ( f ) = lim
N→∞

E

[

1

N
X ( f ) X∗ ( f )

]

=

= lim
N→∞

E

[

1

N
H ( f ) E ( f ) E∗ ( f ) H∗ ( f )

]

= (15)

= H ( f ) VH∗ ( f )

where V is a diagonal matrix with variances σ2
1
, σ2

2
, . . . , σ2

k
and

zero covariances between residual noises.
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2.2. Instantaneous causality

The original pairwise Granger causality concept [15] defined

instantaneous causality as a special form of interaction between

two time series without a time delay. This permits an unknown

common driving source to be omitted from the model. But

the external driving source not included in the model causes

a nonzero covariance between residual noises which cannot be

explained by the MVAR model.

All the further discussed methods of multiple variable time

series analysis are focused only on interactions involving a time

delay. As mentioned in [21], the MVAR identification problem

is limited to the exclusive consideration of the past values in the

prediction. In the following text, stationary simultaneous time

series with zero means and linear multivariate autoregressive

character are assumed. All the time series that can have a causal

impact on the others are included in the model, leading to zero

covariances among the residual noises in the MVAR model (V

is diagonal).

2.3. MVAR model estimation

If the time series X (t) satisfies stationarity, zero means and

MVAR conditions then covariances between the elements of

E (t) are zero. Coefficients A (n) and variances of E (t) can be

obtained by an MVAR identification procedure. For example,

by solving multichannel Yule-Walker equations [42] obtained

as a result of the minimization of the prediction error vari-

ance, or by using more robust procedures such as the Vieira-

Morf algorithm1 [43, 44] based on the idea of maximum en-

tropy [45, 46]. A detailed comparison of the MVAR estimators

was performed in [47] and the Vieira-Morf method2 was rec-

ommended as the most robust.

In order to fit the MVAR model to real data, the order p of

the model has to be chosen. The Akaike Information Criterion

(AIC) or the Bayesian Information Criterion (BIC) described,

e.g., in [48, 44, 17] are often used for the model order estima-

tion. However, if the MVAR conditions are not exactly met, the

MVAR model is not able to describe residual noises and these

criteria may fail.

2.4. Direct Directed Transfer Function (dDTF)

Partial coherence can be defined as [24]

χ2
i j ( f ) =

M2
i j

( f )

M j j ( f ) Mii ( f )
(16)

where Mi j ( f ) is a minor of the spectral matrix S ( f ) obtained by

removing its ith row and jth column. To analyze a causal flow

from source variable X j (t) to target variable Xi (t), utilizing the

full frequency DTF (ffDTF) [24]

η2
i j ( f ) =

∣

∣

∣Hi j ( f )
∣

∣

∣

2

∑

f

k
∑

m=1

|Him ( f )|2
(17)

1Implemented, e.g., in a BioSig toolbox for Octave and Matlab available at

http://biosig.sourceforge.net/
2Although it was incorrectly denominated as Nutall-Strand. The comment

in the BioSig toolbox by the same author corrects this information.

the Direct Directed Transfer Function (dDTF)3 [24] is

δi j ( f ) = χi j ( f ) ηi j ( f ) . (18)

The dDTF is a combination of the partial coherence and the

transfer function in the direction that is supposed to differentiate

the direct causal connections from the indirect ones.

2.5. Generalized Partial Directed Coherence (GPDC)

To analyze a causal flow from source variable X j (t) to target

variable Xi (t), the GPDC4 is defined by [23] as

GPDCi j ( f ) =

1
σi

∣

∣

∣Ai j ( f )
∣

∣

∣

√

k
∑

m=1

1

σ2
m

∣

∣

∣Am j ( f )
∣

∣

∣

2

. (19)

It utilizes coefficients of an MVAR model transformed into the

frequency domain and focuses only on the direct connection be-

tween the two series in the given direction. The square modulus

of GPDC is

GPDC2
i j ( f ) =

1

σ2
i

∣

∣

∣Ai j ( f )
∣

∣

∣

2

k
∑

m=1

1

σ2
m

∣

∣

∣Am j ( f )
∣

∣

∣

2
. (20)

It can be seen that the denominator normalizes the equation so

the summation of all GPDC2
i j ( f ) for the given source variable

X j (t) is equal to one.

2.6. Autoregressive causal relation (ACR)

2.6.1. Filtering approach to causal relations

In order to explain model (5) using the digital filtering ap-

proach, the MVAR model should be transformed into the z-

domain. Let us consider a matrix

A (z) =

























A11 (z) · · · A1k (z)
...

. . .
...

Ak1 (z) · · · Akk (z)

























(21)

where

Ai j (z) = δi j −
p
∑

n=1

ai j (n)z−n (22)

for row index i = 1, . . . , k and column index j = 1, . . . , k, where

δi j = 1 for i = j, δi j = 0 otherwise. Let us introduce a z-

transform of a vector of segmented realizations of variables (1)

X (z) = (X1 (z) , X2 (z) , . . . , Xk (z))T (23)

and a z-transform of a vector of corresponding unpredictable

components (2)

E (z) = (ε1 (z) , ε2 (z) , . . . , εk (z))T . (24)

3The dDTF is available in the BioSig toolbox.
4The GPDC is also available in the BioSig toolbox.

4



1
A11(z)
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X2 (z) Xk (z)

X1 (z)

Figure 2: MVAR variable X1 (z) filtering diagram.

Then the z-transform of the MVAR model (5) has the form of

A (z) X (z) = E (z) . (25)

Using this notation, let us consider an example for target vari-

able X1 (t). Applying the z-transform on (3) with i = 1, one can

get

X1 (z) =
1

A11 (z)

















ε1 (z) −
k
∑

j=2

A1 j (z) X j (z)

















(26)

where 1/A11 (z) is an all-pole infinite impulse response (IIR)

filter and −A1 j (z) are finite impulse response (FIR) filters. The

corresponding diagram is depicted in Fig. 2. The advantage of

this approach is that it does not detect false indirect connections.

In general, speaking about the target variable Xi (z), source

variables X j (z) where j , i are filtered with FIR filters −Ai j (z)

where

Ai j (z) = −ai j (1) z−1 − · · · − ai j (p) z−p (27)

and all these source components including white noise εi (t) are

additionally filtered with an IIR filter

1

Aii (z)
=

1

1 − aii (1) z−1 − · · · − aii (p) z−p
. (28)

The z-transform of the target variable is then

Xi (z) =
1

Aii (z)





























εi (z) −
k
∑

j=1
j,i

Ai j (z) X j (z)





























. (29)

2.6.2. Power spectral density representation

In order to get the PSD of variable Xi (t), (29) must be evalu-

ated on the unit circle

Xi ( f ) =
1

Aii ( f )





























εi ( f ) −
k
∑

j=1
j,i

Ai j ( f ) X j ( f )





























. (30)

Because of its random character, one has to derive the PSD rep-

resentation of the target variable to analyze all source compo-

nents. Using (8) and (9), the PSD of Xi (t) can be written as5

S ii ( f ) = lim
N→∞

E

[

1

N
Xi ( f ) X∗i ( f )

]

. (31)

5By reason of multiplication of two summations, let us alter the index j in

(30) to m and n respectively.

S ii ( f ) =
1

Aii ( f ) A∗
ii

( f )
lim

N→∞
E

































1

N

































εi ( f ) ε∗i ( f )−

− εi ( f )

























k
∑

n=1
n,i

A∗in ( f ) X∗n ( f )

























−

−

























k
∑

m=1
m,i

Aim ( f ) Xm ( f )

























ε∗i ( f ) +

+

























k
∑

m=1
m,i

Aim ( f ) Xm ( f )

















































k
∑

n=1
n,i

A∗in ( f ) X∗n ( f )

























































































.

(32)

It holds

lim
N→∞

E
[

1
N
εi ( f ) ε∗

i
( f )
]

= σ2
i
,

lim
N→∞

E
[

1
N

Xm ( f ) X∗n ( f )
]

= S mn ( f ) .
(33)

Variable εi ( f ) is given by (12)

εi ( f ) =

k
∑

m=1

Aim ( f ) Xm ( f ) (34)

and similarly

ε∗i ( f ) =

k
∑

n=1

A∗in ( f ) X∗n ( f ). (35)

With substitution

Timn ( f ) = Aim ( f ) A∗in ( f ) S mn ( f ) , (36)

one gets

S ii ( f ) =
1

|Aii ( f )|2

























σ2
i −

k
∑

m=1

k
∑

n=1
n,i

Timn ( f ) −

−
k
∑

m=1
m,i

k
∑

n=1

Timn ( f ) +

k
∑

m=1
m,i

k
∑

n=1
n,i

Timn ( f )

























. (37)

From the subtraction of the last two terms, only the part of n = i

remains

S ii ( f ) =
1

|Aii ( f )|2



























σ2
i −

k
∑

m=1

k
∑

n=1
n,i

Timn ( f ) −

−
k
∑

m=1
m,i

Aim ( f ) A∗ii ( f ) S mi ( f )



























. (38)
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To simplify this expression, let us define a substitution

Uim ( f ) = Aim ( f ) A∗ii ( f ) S mi ( f ) . (39)

Then

S ii ( f ) =

=
1

|Aii ( f )|2

























σ2
i −

k
∑

m=1

k
∑

n=1
n,i

Timn ( f ) −
k
∑

m=1
m,i

Uim ( f )

























.

(40)

To separate S ii ( f ) to individual causal components, one should

divide the first summation into parts as follows

−
k
∑

m=1

k
∑

n=1
n,i

Timn ( f ) =

= −
k
∑

m=1
m,i

k
∑

n=1
n,i

Timn ( f ) −
k
∑

n=1
n,i

Aii ( f ) A∗
in

( f ) S in ( f ) =

= −
k
∑

m=1
m,i

k
∑

n=1
n,i

Timn ( f ) −
k
∑

m=1
m,i

Aii ( f ) A∗
im

( f ) S im ( f ) =

= −
k
∑

m=1
m,i

k
∑

n=1
n,i

Timn ( f ) −
k
∑

m=1
m,i

U∗
im

( f ) =

= −
k
∑

m=1
m,i

k
∑

n=1
n,i
n,m

Timn ( f ) −
k
∑

m=1
m,i

Aim ( f ) A∗
im

( f ) S mm ( f ) −

−
k
∑

m=1
m,i

U∗
im

( f )

(41)

where S mi ( f ) = S ∗
im

( f ) is used.

The PSD is then

S ii ( f ) =
1

|Aii ( f )|2











































σ2
i −

k
∑

m=1
m,i

k
∑

n=1
n,i
n,m

Timn ( f ) −

−
k
∑

m=1
m,i

|Aim ( f )|2S mm ( f ) −
k
∑

m=1
m,i

U∗im ( f ) −
k
∑

m=1
m,i

Uim ( f )











































.

(42)

Let us use the replacements

−
k
∑

m=1
m,i

k
∑

n=1
n,i
n,m

Timn ( f ) = −
k−1
∑

m=1
m,i

k
∑

n=m+1
n,i

2Re (Timn ( f )), (43)

and

−
k
∑

m=1
m,i

Uim ( f ) −
k
∑

m=1
m,i

U∗im ( f ) = −
k
∑

m=1
m,i

2Re (Uim ( f )). (44)

Let us define the causal components

Fi←i ( f ) =
σ2

i

|Aii ( f )|2
, (45)

Fi←m,n ( f ) =
−2Re (Timn ( f ))

|Aii ( f )|2
, (46)

and

Fi←m ( f ) =
−|Aim ( f )|2S mm ( f ) − 2Re (Uim ( f ))

|Aii ( f )|2
. (47)

The final form of the PSD decomposition of S ii ( f ) to individual

causal components can be written in the form of

S ii ( f ) =

= Fi←i ( f ) +

k−1
∑

m=1
m,i

k
∑

n=m+1
n,i

Fi←m,n ( f ) +

k
∑

m=1
m,i

Fi←m ( f ). (48)

The key idea is to split the PSD S ii ( f ) of the target variable

Xi (t) into the part Fi←i ( f ) caused by the filtration of the noise

εi (t) through the IIR filter Aii
−1 (z), and elements caused by

other variables Fi←m ( f ) and Fi←m,n ( f ). The Fi←m ( f ) part cor-

responds to a direct causal relation from another variable Xm (t).

The Fi←m,n ( f ) part is present only when two variables Xm (t)

and Xn (t) with nonzero cross power spectral density (CPSD)

S mn ( f ) both have direct causal connections to the target vari-

able Xi (t). Fi←m ( f ) and Fi←m,n ( f ) can be positive or nega-

tive so it can model both the increase and decrease of the PSD

caused by the causal relations.

2.6.3. New measures

Considering (48) and according to theoretical criteria sug-

gested in [37], we propose new measures for causal relations

analysis in the frequency domain, based on the decomposition

of the target variable into separate causal components.

The absolute autoregressive causal relation (absolute ACR)

corresponds directly to the portion of the PSD of the target vari-

able Xi (t) not caused by other variables or the portion of the

PSD caused by individual source variables Xm (t)

ACRi←mABS ( f ) =

{

Fi←i ( f ) , for m = i

Fi←m ( f ) , for m , i
(49)

and the portion of the PSD caused by couples of source vari-

ables Xm (t) and Xn (t), present only in the case that both vari-

ables have direct causal relation with the Xi (t) (nonzero Aim ( f )

and Ain ( f )) and the couple of source variables has a nonzero

CPSD S mn ( f )

ACRi←m,nABS ( f ) = Fi←m,n ( f ) , m , i, n , i, n > m. (50)

The key property of this approach is, as it can be seen from (48),

for every target variable Xi (t), the summation of its absolute
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components is equal to the PSD of the variable

k
∑

m=1

ACRi←mABS ( f )+

+

k−1
∑

m=1
m,i

k
∑

n=m+1
n,i

ACRi←m,nABS ( f ) = S ii ( f ) , ∀i = 1 . . . k.

(51)

This feature, along with the ability of modeling both the in-

crease and decrease of the PSD caused by direct causal rela-

tions, are the main advantages of the proposed measure as com-

pared to state-of-the-art methods.

The relative autoregressive causal relation normalizes the

absolute ACR by the PSD of the target6 S ii ( f ) and hence, gives

a quantity of the fraction of the contribution to the target vari-

able

ACRi←mREL ( f ) =















Fi←i( f )

S ii( f )
, for m = i

Fi←m( f )

S ii( f )
, for m , i

(52)

and

ACRi←m,nREL ( f ) =
Fi←m,n ( f )

S ii ( f )
, m , i, n , i, n > m. (53)

For every target variable Xi (t), the summation of its relative

components is equal to 1

k
∑

m=1

ACRi←mREL ( f )+

+

k−1
∑

m=1
m,i

k
∑

n=m+1
n,i

ACRi←m,nREL ( f ) = 1, ∀i = 1 . . . k.

(54)

This allows one to compare the strength of the individual causal

components in a percentage.

2.7. Statistical evaluation

Although evaluations in this paper are primarily conducted

on model data (see Sec. 4), a procedure of real data analysis us-

ing a statistical evaluation of causal measures is also outlined.

Since the causal measures have a highly nonlinear relation to

the time series data from which they are derived and distribu-

tions of their estimators are not well established, the use of a

surrogate data method using an unwindowed Fourier transform

introduced in [49] is recommended [24, 50]. The surrogate data

is constructed by randomizing the phase in the Fourier spectra

of the raw data, leading to data with a very similar amplitude

spectra but destroyed causal relations. The causal measures are

then calculated from the surrogate data. By repeating this pro-

cess a number of times, an empirical estimate of a probability

density function (histogram) is constructed, which corresponds

to the null hypothesis that there is no causal connection.

6A normalization by the PSD of the source variable does not make sense in

terms of dividing the total power to its parts because the sources in the MVAR

model definition are copied to targets, not divided.

3. Analysis of the two-variable case

As mentioned above, the square modulus of GPDC is often

interpreted as the proportion of the power spectra of the target

variable caused by the causal relation [30]. To illustrate the fact

that this statement may not be accurate, a comparison with the

relative ACR on a two-variable case is conducted in the follow-

ing.

Using (20), a general equation for causal relation in the di-

rection 2← 1 can be obtained

GPDC2
21 ( f ) =

1

σ2
2

|A21 ( f )|2

1

σ2
1

|A11 ( f )|2 + 1

σ2
2

|A21 ( f )|2
=

=
σ2

1
|A21 ( f )|2

σ2
2
|A11 ( f )|2 + σ2

1
|A21 ( f )|2

. (55)

Using (52) (the component (53) is not present for k = 2) without

the replacement of (44) in (47), one gets

ACR2←1REL ( f ) =
−|A21 ( f )|2S 11 ( f ) − U21 ( f ) − U∗

21
( f )

|A22 ( f )|2S 22 ( f )
(56)

where

U21 ( f ) = A21 ( f ) A∗22 ( f ) S 12 ( f ) , (57)

this together with (15) results in

ACR2←1REL ( f ) =

=
[

|A22 ( f )|2
(

σ2
2
|A11 ( f )|2 + σ2

1
|A21 ( f )|2

)]−1

[

σ2
1
|A21 ( f )|2|A22 ( f )|2 − σ2

2
|A12 ( f )|2|A21 ( f )|2+

+ σ2
2
A11 ( f ) A22 ( f ) A∗

12
( f ) A∗

21
( f )+

+ σ2
2
A∗

11
( f ) A∗

22
( f ) A12 ( f ) A21 ( f )

]

.

(58)

It is evident that if the model does not contain a causal relation

1 ← 2, i.e., A12 ( f ) = 0, then GPDC2
21 ( f ) = ACR2←1REL ( f ).

If the model contains the causal relation 1 ← 2, the GPDC

produces a result different from the ACR. In contrast to the

ACR, GPDC does not respect the effect of the feedback rela-

tion 1← 2.

4. Model data illustration

In order to compare the results of the dDTF, GPDC and ACR,

an advanced MVAR model used in [21, 17] was chosen (see

Fig. 3)

X1 (t) = ε1 (t) + 0.95
√

2X1 (t − 1) − 0.9025X1 (t − 2) ,

X2 (t) = ε2 (t) + 0.5X1 (t − 2) ,

X3 (t) = ε3 (t) − 0.4X1 (t − 3) ,

X4 (t) = ε4 (t) − 0.5X1 (t − 2) + 0.25
√

2X4 (t − 1)+

+ 0.25
√

2X5 (t − 1) ,

X5 (t) = ε5 (t) − 0.25
√

2X4 (t − 1) + 0.25
√

2X5 (t − 1)

(59)

where t stands for the index of a discrete-time instance, ε1, ε2,

ε3, ε4, and ε5 are Gaussian white noises with zero means and

variances 0.6, 0.5, 0.3, 0.3, and 0.6 respectively.
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z
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z
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2
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4 5

Figure 3: A diagram of the model data connection. The arrows denote causal re-

lations, the z-domain delay represents the connection delay (the minimal value

of the time shift in the equation). In addition to the bidirectional connection

4 ↔ 5, the model also contains indirect causal connections. The sequential

driving 5 ← 4 ← 1 can cause false detection of the indirect relation 5 ← 1.

And the differently delayed drivings 2← 1 and 3← 1 can cause false detection

of the indirect 3 ← 2 because samples of 2 contain information, which helps

with the prediction of 3, although, in fact, it is the information transferred from

1.

The absolute ACR (see Fig. 4 and 6a) shows the PSD of the

contribution of the causal relation to the target variable. The

main diagonal values correspond to the PSD of the variable

which is not caused by other variables. The summation of all

contributions to the target variable is equal to the total PSD of

the variable (51), a diagonal value of the spectral matrix (15).

The advantage of the ACR is that it correctly detects

only direct relations and excludes false indirect ones (e.g.,

ACR5←1ABS ( f ) or ACR3←2ABS ( f ) in Fig. 4 are zero) and, there-

fore, uncovers the correct connection diagram of causal rela-

tions among the time series.

ACR1←1ABS ( f ) is equal to S 11 ( f ) because there are no in-

coming causal connections to the first variable. Equation X1 (t)

involves a second order IIR all-pole filter with a peak repre-

senting gain of 14.51 at the normalized frequency of 0.125. As

this filter processes the white noise with the variance of 0.6, the

peak value of the PSD is equal to the gain squared multiplied

by the variance, which is 126.2. This is the only second order

IIR filter in the model and this peak propagates throughout the

model according to causal connections.

Equations for X2 (t) and X3 (t) do not have the all-pole IIR

filter, therefore ACR2←2ABS ( f ) and ACR3←3ABS ( f ) on the main

diagonal (corresponding to the PSD of the variable which is

not caused by other variables) are flat and are equal directly to

the power spectral densities of the white noises with variances

0.5 and 0.3, respectively. The X1 (t) propagates to X2 (t) and

X3 (t) through simple FIR filters with a delay and one coeffi-

cient forming a uniform absolute value of the gain across all

frequencies, therefore ACR2←1ABS ( f ) and ACR3←1ABS ( f ) are

equal to S 11 ( f ) multiplied by the FIR gain squared, resulting

in the peak values 31.56 and 20.2, respectively.

Equations for X4 (t) and X5 (t) have the same first order

IIR all-pole filter forming a low-pass filter with a peak value

of 1.547 at the zero frequency, hence ACR4←4ABS ( f ) and

ACR5←5ABS ( f ) are results from filtering the white noises with

this filter. The peak values at the zero frequency are equal to

filter gain squared multiplied by variances of the noises, re-

sulting in values of 0.7179 and 1.436, respectively. The sit-

uation with X4 (t) and X5 (t) is more complicated because of

the bidirectional causal relation forming a feedback. This feed-

back diminishes the total PSD of the target variable at some fre-

quencies, represented by negative values in the absolute ACR.

However, the main positive peak at the normalized frequency of

0.125 is still dominant. As X4 (t) has two causal inputs (X1 (t)

and X5 (t)), and because of the nonzero cross spectral density

S 15 ( f ) caused by the sequential causal relation 5← 4← 1, the

coupled sources causal relation ACR4←1,5ABS ( f ) is also present

but this fact does not affect the causal connections diagram at

all.

The relative ACR (see Fig. 5 and 6b) is the absolute ACR nor-

malized by the PSD of the target variable S ii ( f ), thus it depicts

the relative amount of the contribution of the causal relation and

the summation of all contributions is equal to 1. The main diag-

onal values correspond to the relative part of the power spectral

density of the variable which is not caused by other variables.

The suggested use is to evaluate the absolute ACR in order

to get an overview of the power of the contributions at each

frequency, and then compare the values with the total PSD of

the target variable via the relative ACR. The use of the relative

ACR alone cannot be generally recommended because such re-

sults can return high values at frequencies where signals have

very low power because of the ratio of the two values close to

zero.

The dDTF (see Fig. 7) often returns shapes similar to the

absolute relations (see Fig. 4), however, this is not always the

case (e.g., relations 5← 4 and 4← 5). The value of the relation

strength is difficult to compare and interpret. The dDTF falsely

detects the indirect causal relation 5 ← 1 with the same order

of magnitude as the correct direct relation 5← 4.

The GPDC (see Fig. 8) normalizes the values of the relation

strength in the range from 0 to 1. The squared modulus of the

GPDC (see Fig. 9) partially resembles the relative ACR (see

Fig. 5) but appears more flattened. It reaches high values even

at frequencies where signals have very low power. On the other

hand, the maxima are lowered in comparison with the relative

ACR. These facts complicate the interpretation of the GPDC

results. In comparison to the dDTF, the advantage of the GPDC

(as well as of the ACR) is that it detects only the direct causal

connections, excluding the false indirect ones. This is caused

by the numerator of the GPDC definition (19) which uses only

the MVAR coefficients of the direct connection.

If we take the square modulus of the GPDC (see Fig. 9), the

denominator of (20) is equal to the summation of all the numer-

ators for the given j. Then, the summation of all the compo-

nents for the given source is equal to 1 and the main diagonal

values are the residue remaining after all the relations from the

source are subsracted. This may lead to a false impression that

the square modulus of the GPDC represents the absolute ACR

normalized by the summation of all the absolute ACRs com-

ing out of the common source. However, it is obvious that the

numerator of (20) is not equal to the absolute ACR.

5. Conclusion

The suggested ACR measure analyzes the causal relations in

the frequency domain using an MVAR model. ACR decom-

poses the diagonal elements of a spectral matrix into separate
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causal components that show directions of influence among

multivariate time series of an autoregressive character. ACR

measures causality in meaningful physical terms as power con-

tributions and can separate direct effects from indirect ones.

This easily interpretable definition allows one to evaluate the

performance of state-of-the-art methods. The concurrent use of

both the absolute and relative ACR is always recommended for

obtaining a complete representation of the absolute values of

the causal relations and also the proportion of their impact on

the target. The ACR is focused on the real impact of each con-

nection, i.e., which part of the power is transferred via the con-

nection. As the time series have random character, the power

spectral density approach must be applied. This is in contrast

with PDC and GPDC which only analyze the MVAR coeffi-

cients of each connection transferred into the frequency do-

main.

As a result of the PSD utilization, the ACR contains extra

coupled causal relations from two sources together. However,

these components are present only in the case when both source

variables have a nonzero CPSD and both have direct causal in-

fluence to the target variable, so the presence of such compo-

nents does not affect the causal relations connection diagram.

Unlike the original Granger causality concept that evaluates

the strength of each causal relation with a single non-negative

scalar value, the values of ACR can be positive or negative in or-

der to model both an increase or a decrease of the PSD caused

by a causal relation in the analyzed direction. Therefore, the

ACR allows one not only to compare the strength of the rela-

tions, but also to analyze the effect of the relation. The GPDC

and dDTF decompose the strength of causal relations into the

frequency domain, however the values lack straightforward in-

terpretability. The dDTF may not be able to recognize direct

relations from indirect ones in some cases as shown in this pa-

per. The advantage of the ACR is that the summation of the

components creates the total PSD of the target variable. This

allows one to compare and clearly interpret the strength of the

causal components.

While this paper suggests a new methodology of interpre-

tation of the MVAR model in terms of causal relations in the

frequency domain, future research should be focused on the be-

havior of the signals not strictly satisfying the MVAR condi-

tions. An elaborate study of numerical stability in such cases

should also be examined.
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Figure 4: Absolute ACR; causal relation from source Xm (t) to target Xi (t).

Labels of normalized frequency axis are common for the column, labels of

ACRi←mABS ( f ) axis are individual at each relation because of the different dy-

namics. The summation of all components creating the target variable includ-

ing the relation from the couple of sources in Fig. 6a is equal to the PSD of the

variable S ii ( f ) depicted in the 6th column.

 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Normalized frequency

ACRi←mREL (f)

00000

0

0

0

0

0

0

.5.5.5.5.5.5

1

1

1

1

1

m = 1 m = 2 m = 3 m = 4 m = 5 Σ

i = 1

i = 2

i = 3

i = 4

i = 5

Figure 5: Relative ACR; causal relation from Xm (t) to Xi (t). Labels of nor-

malized frequency axis are common for the column, labels of ACRi←mREL ( f )

axis are common for the row. The summation of all components of the target

variable including the relation from the couple of sources in Fig. 6b is always

one (see the 6th column).
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Figure 6: ACR – causal relation from a couple of sources X1 (t) and X5 (t) to

target X4 (t); (a) absolute ACR and (b) relative ACR. This is the only nonzero

coupled causal relation because of the two direct causal connections to the same

target from the sources with nonzero CPSD.
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Figure 7: dDTF; causal relation from X j (t) to Xi (t). Labels of normalized

frequency axis are common for the column, labels of δi j ( f ) axis are common

for the row.
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Figure 8: GPDC; causal relation from X j (t) to Xi (t). Labels of normalized fre-

quency axis are common for the column, labels of GPDCi j ( f ) axis are common

for the row. If we take the square modulus of GPDC, the main diagonal values

are the residue remaining when all the relations from the source are subtracted

(see Fig. 9).
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Figure 9: GPDC2
i j

( f ); causal relation from X j (t) to Xi (t). Labels of normal-

ized frequency axis are common for the column, labels of GPDC2
i j

( f ) axis are

common for the row. The 6th row is the summation of all values in the column,

always equal to one.
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