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ABSTRACT

This paper suggests new measures for the evaluation of
an absolute, ratio and relative causal relation in frequency
domain in the context of multivariate autoregressive models.

The idea is explained on four synoptic artificial data
experiments. In each example, a model without causal
connection is presented and then, a causal connection is
added. The influence of this modification is analysed and
interpreted in the scope of LTI digital filters.

Using the proposed measures, a comparison of results
of state-of-the-art frequency domain methods Generalized
Partial Directed Coherence (GPDC) and Direct Directed
Transfer Function (dDTF) is performed to evaluate their
behavior.

The concept is demonstrated on real EEG data of awake
resting state of human brain.

1. MOTIVATION

Identification of causal relations in electroencephalography
(EEG) is an important problem in the analysis of human
brain function during various tasks. It reveals not only the
strength of connections but also the direction of information
flow among brain structures.

The original idea of Granger causality [7] for two
stationary time series compares the prediction error of
multivariate autoregressive models (MVAR), modelling the
target time series including and excluding the past values of
the source time series. If the knowledge of previous values
of the source variable helps to predict the current value of the
target variable, the variance of the prediction error is lower
and we say the source variable has a causal influence on the
target variable. Conditional Granger causality [6] extends the
idea to three variables in order to distinguish direct relations
and indirect ones mediated through the third variable.

The Granger causality concept was used originally in
econometrics. In recent years, it has started to be used
also on neurophysiological data like functional magnetic
resonance imaging, magnetoencephalography and electroen-
cephalography for revealing causal connections among
brain structures. A new need for the frequency domain
decomposition that would show which rhythms participate
in the information flow has arised.

However, the direct transform of Granger causality to the
frequency domain for more than two variables, necessary
for distinguishing direct and indirect causal connections,
encounters problems [4]. New methods DTF [9] and PDC
[1] were proposed. Past studies aim to improve the methods
to get better behavior on models according to the intuitive
expectations, yielding to innovations in the form of dDTF
[10] and GPDC [2]. The dDTF features multiplication by
a partial coherence, the GPDC adds an extra normalization.

The GPDC and dDTF compute only one MVAR model in-
cluding the source variable, and subsequently, the frequency
decomposition of causal relations are calculated from its
coefficients. Both methods have been used in numerous
studies since their publication, differences of their outputs
have been explained intuitively by the nature of diversity of
their definitions.

However, an unambiguous definition of frequency mean-
ing of causal relation in the MVAR model is missing. This
paper suggests such an explanation using four synoptic
artificial models, clearly separating the causal relation. On
the basis of this separated relation, absolute, ratio and relative
causal measures in frequency domain are proposed. The
GPDC and dDTF outputs are compared using the new
measures. A new concept of interpretation of GPDC results
is presented. The concept is demonstrated on real EEG data
of awake resting state of human brain.

2. DEFINITIONS

2.1 Direct Directed Transfer Function (dDTF)

Let us consider process consisting of k stationary variables
with zero means (e.g., corresponding to particular channels
of EEG data)

X (t) = (X1 (t) ,X2 (t) , . . . ,Xk (t))T (1)

where t stands for the sample index in a discrete time. This
process can be fitted into an MVAR model of the order of p

p
∑

j=0

A ( j)X (t− j) = E (t) (2)

where A ( j) is coefficients matrix of size k × k, weighting
the contribution of previous samples delayed by j with
respect to the actual sample and A (0) = I is identity matrix.
E (t) is a vector of k values of the prediction error, in
other words uncorrelated values of white noise with zero
mean, calculated as a difference between actual values
and predicted values based on the linear combination of p
previous samples with the model coefficients A ( j). For the
MVAR model coefficients estimation, one can solve Yule-
Walker equations obtained as a result of minimization of
prediction error variance, or use more robust procedures
like Levinson-Wiggins-Robinson (LWR) algorithm based
on the idea of maximum entropy, implemented, e.g., in

a BioSig toolbox1. A detailed comparison of the MVAR
estimators was performed in [11] and the LWR method was
recommended.

1BioSig toolbox for Octave and Matlab available at
http://biosig.sourceforge.net/
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This model can be transformed into the frequency
domain with frequency f , yielding A ( f )X ( f ) =E ( f ), which
can be rewritten as

X ( f ) = A−1 ( f )E ( f ) =H ( f )E ( f ) (3)

where H ( f ) is the transfer function of the system. Introduc-
ing power spectra

S ( f ) =H ( f )VH∗ ( f ) (4)

where ∗ denotes transposition and complex conjugate, and V
is the diagonal matrix with variances of noise E ( f ). Partial
coherence can be then defined

χ2
i j ( f ) =

M2
i j

( f )

M j j ( f ) Mii ( f )
(5)

where Mi j ( f ) is a minor created by removing ith row and jth
column of the spectral matrix S. Paper [10] utilized the full
frequency DTF (ffDTF)

η2
i j ( f ) =

∣

∣

∣Hi j ( f )
∣

∣

∣

2

∑

f

k
∑

m=1

|Him ( f )|2
(6)

to introduce so-called Direct Directed Transfer Function
(dDTF)

δi j ( f ) = χi j ( f )ηi j ( f ) (7)

which is a combination of the information from the partial
coherence and the information of the direction of influence,
which leads to a reliable differentiation of the direct causal
connections from the indirect ones. This dDTF is also
implemented in the BioSig toolbox mentioned above.

2.2 Generalized Partial Directed Coherence (GPDC)

GPDC is defined in [2] as

GPDCi j ( f ) =

1
σi

∣

∣

∣Ai j ( f )
∣

∣

∣

√

k
∑

m=1

1

σ2
m

∣

∣

∣Am j ( f )
∣

∣

∣

2

(8)

where σ2
i

denotes the variance of noise Ei (t). GPDC is also
available in BioSig toolbox.

2.3 Model Order Estimation and Statistical Evaluation

In order to fit real data into the MVAR model, the order of
the model p has to be chosen. Akaike Information Criterion
(AIC) or Bayesian Information Criterion (BIC) described
e.g. in [5] are often used for model order estimation, or one
can use an experimental approach published in [3].

Since the causal measures have highly nonlinear relation
to the time series data from which they are derived and
distributions of their estimators are not well established, [8]
proposed an empirical distribution technique using surrogate
data. These data are created by random permutations of
samples in original channels, which leads to cancellation
of causal relations among channels. Causal measures are
then estimated from the surrogate data. Repeating this
process multiple times, the empirical distribution for the null
hypothesis of no causal connection is created.

H (z)

H (z)

H (z)

H (z)

ε2 (t) ε2 (t)

V ′
12

(t) V ′
12
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V2 (t) V2 (t)

V ′
2

(t)

V12 (t)

D
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Figure 1: Demonstration of equality in (12) using the LTI
superposition principle. Left part: V2 (t) in (12), right part:
V2 (t) in (10), bottom part: the common H (z) all-pole filtering
used in both left and right part.

3. DEMONSTRATION ON MODEL DATA

3.1 Equation of MVAR model

By reason of clear separation of the causal relation, and
thereby its explicit detection, unlike commonly used in
literature, a different approach of model data definition is
proposed in this paper. Let us consider the following
autoregressive time series

V1 (t) = ε1 (t)+1.5907V1 (t−1)−0.8133V1 (t−2) ,
V′

2
(t) = ε2 (t)+0.1864V′

2
(t−1)−0.9042V′

2
(t−2) ,

(9)

V′
12

(t) = a1V1 (t−1)+a2V1 (t−2)+ . . .+a15V1 (t−15) ,
V2 (t) = V′

12
(t)+ ε2 (t)+0.1864V2 (t−1)−0.9042V2 (t−2)

(10)
where t stands for the index of a discrete time instance, ε1

and ε2 are Gaussian white noises with zero means and unit
variances. Variables V1 and V′

2
are single autoregressive

signals without any causal relations. These formulas
correspond to an all-pole infinite impulse response (IIR)
filtering of white noise.

In contrast with V′
2
, V2 has an additional causal relation

V1→ V2 defined in the conformity with MVAR signals with
formula V′

12
(t). The V′

12
equation performs filtering of V1

via finite impulse response (FIR) filter of the order of 14 with
coefficients a1 . . .a15 defined for four synoptic cases later.

For the evaluation of the full influence of V′
12

to V2, it is
necessary to reflect the feedback of the previous samples of
V2 to the actual V2 (t). Let us define

V12 (t) = V′12 (t)+0.1864V12 (t−1)−0.9042V12 (t−2) (11)

thus the total causal relation V1 → V2 corresponds to V12

which is the combination of a FIR filtration and an all-pole
IIR filtration.

The final MVAR model consists of the variables V1 and
V2. Since all filters are LTI systems, the superposition
principle can be applied

V2 (t) = V′2 (t)+V12 (t) (12)

(see Fig. 1). Hereby, the causal relation V1 → V2 is clearly
separated and explained in the frequency domain using V12.
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Ŝ 12 ( f )
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Ŝ 2 ( f )

0

0

20

50 100

−20

−40

Frequency (Hz)

Ŝ
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Ŝ
1

2
re

l
(
f)

0
0 50 100

0.2

0.4

0.6

0.8

1

Frequency (Hz)

Ŝ
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Figure 2: Four models (columns), first row: Welch power spectral density estimate (PSD) of source variable (Ŝ 1 ( f )), target

variable with (Ŝ 2 ( f )) and without (Ŝ ′
2

( f )) causal relation V1 → V2, the bold line corresponds to PSD of absolute causal

relation Ŝ 12 ( f ), second row: ratio causal relation, third row: relative causal relation, fourth and fifth row: GPDC and dDTF
analysis of causal relations V1→ V2 and V2→ V1.
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3.2 Model parameters

For demonstration, 7680 samples of the MVAR signals were
generated, which corresponds to 30 seconds of two channels
with sampling frequency fs = 256Hz. Coefficients of V1

part in (9) were designed to represent an all-pole resonator
(bandpass) with the peak frequency of 20Hz and bandwidth
of 8Hz, coefficients of V′

2
part in (9) feature an all-pole

resonator with the peak frequency of 60Hz and bandwidth
of 4Hz.

Four models with different causal relation connections
were created by the choice of coefficients a1 . . .a15 in (10).
In the first three models, these coefficients form an FIR
bandpass of the order of 14, designed via the windowing
method utilizing Hamming window, specifically with bands
10−30Hz, 30−50Hz and 50−70Hz. In the last model, only
the first two coefficients were set to values 1.19 and −0.5, the
rest were set to zero, resulting in a very smooth first order
highpass with unit transfer at 40Hz and a total range from
−3.2dB in stopband to +4.6dB in passband.

The Welch power spectral density estimates (PSD) were
calculated using Hann window of the size of 128 with a 64

samples overlap, yielding to variable Ŝ 1 ( f ) corresponding to
PSD of V1 etc.

3.3 Suggested Criteria

The criteria for the evaluation of the methods performance
are as follows.
Absolute causal relation in frequency domain:

Ŝ 12 ( f ) = Ŝ 2 ( f )− Ŝ ′2 ( f ) (13)

where Ŝ ′
2

( f ) corresponds to the signals without the causal

relation, Ŝ 2 ( f ) contains the causal relation (see the first row
in Fig. 2 where each column corresponds to one of four
models).
Ratio causal relation:

Ŝ 12rat ( f ) = Ŝ 2 ( f )/Ŝ ′2 ( f ) (14)

is displayed in the second row in Fig. 2.
Relative causal relation:

Ŝ 12rel ( f ) =
(

Ŝ 2 ( f )− Ŝ ′2 ( f )
)

/Ŝ 2 ( f ) (15)

is in the third row in Fig. 2. Equations (13) and (15) are in
the relation

Ŝ 12 ( f ) = Ŝ 12rel ( f ) Ŝ 2 ( f ) . (16)

The ratio (14) and relative (15) causal relations are given by

Ŝ 12rat ( f ) =
1

1− Ŝ 12rel ( f )
. (17)

The last two rows in Fig. 2 contain GPDC and dDTF
measures for both directions of the possible causal relation.

4. EXPERIMENT WITH REAL EEG

The concept of use of previously discussed criteria is
demonstrated on experiment with real EEG data to reveal
connections among brain centers during an awaked resting
state with closed eyes.

The EEG data using 111 scalp electrodes were sampled
with fs = 256Hz. Twelve realizations of 30 seconds data

Figure 3: Indexing of 111 scalp EEG electrodes.

segments were used. The electrode positions can be seen in
Fig. 3.

Data was fitted into the MVAR model of the order of
15. Because the function Ŝ ′

2
( f ) is not available for the real

data, the following procedure is suggested. First, the GPDC
estimator is calculated. The choice of GPDC is explained
in the discussion section below. Second, the ratio causality
from the GPDC is evaluated in conformity with (17). This
procedure is based on the fact that the GPDC results are very
similar to our understanding of the relative causality.

The conversion of the GPDC to ratio form is proposed
to better distinguish between strong and weak relations.
Granger causality is also defined in the ratio form so the
results can be interpreted in the same way.

The statistical significance threshold of the results is
performed as described in Section 2.3 with 500 permutations
of surrogate data using a significance level of 0.05 and the
Bonferroni correction. The illustration of the results is given
in Fig. 4, the ratio of the causal relation evaluated using
the GPDC and the threshold given by surrogate data are
depicted. This figure demonstrates a significant relation
between electrodes 94 and 12. The alpha rhythm around
10Hz typical for resting state is visible as the first peak.
Other relations were found between electrodes 94 and 72,
98 and 79, and 79 and 12. These results correspond with the
assumptions made by physiologists about the EEG activity
propagation from the occipital area to the front parts of the
brain.

5. DISCUSSION AND CONCLUSIONS

Simulations using modelled data confirm the GPDC results
are very similar to our understanding of the relative causality.
However, direct use of GPDC (or the relative causality) to
reveal causal connections could be misleading because it can
show high values even at frequencies where signals have very
low power. That is why the absolute value of the power of
the causality should be estimated by multiplication of GPDC
by PSD of the target variable as defined in (16).
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Figure 4: Ratio causality in decibels based on GPDC
between electrodes 94 and 12 (the bold line). The first
peak corresponds with alpha rhythm around 10Hz typical
for resting state of the brain function. Dot-and-dash line
represents significancy threshold, values above the line are
significant.

However, in the third artificial model, the causal
connection transfers the information from the band around
60Hz which has a very low power in the source variable.
Although the absolute power of the causality seems to be
high, it is low in comparison with the power of the target
variable in this band. This can be easily seen in the ratio
causality in Fig. 2 (second row, third column). The ratio
form of causal relation strength calculated from GPDC in
conformity with (17) evades this kind of problem.

The definition of dDTF is established by multiplying
combination of two autonomous methods, thus it is very hard
to interpret the results in such an easy way as with GPDC.
The shape of dDTF corresponds partially with the absolute
causality because it features only the parts where the signals
have a high power, and hence, it could be used directly for
revealing causal connections. But in the second model, the
shape is very different from the absolute causality. Moreover,
the peak values of dDTF are not comparable. While the
absolute, ratio and relative causalities show distinctively
different values between the second and third model, the
dDTF peak values are similar.
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