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9. OPTIMIZING The eXTRACTION 
Of vOwel fORMANTs  1

Radek sKARNITZl – Jitka vAŇKOvÁ – Tomáš BOŘIl

9.1. Introduction
Vowel formants have been scientifically analyzed for at least 150 years – 
since 1863, when Hermann von Helmholtz devised special resonators to 
imitate the resonances of vocalic sounds – and they continue to be the 
most frequently applied parameter for the description of vowels in lan-
guages of the world. Formants are studied when we are interested in the 
vowels of a specific language (e.g., Hillenbrand, Getty, Clark & Wheeler, 
1995 for American English; Deterding, 1997 for Standard British English; 
Beňuš, 2012 for Slovak; Skarnitzl & Volín, 2012 for Czech) or when we 
are comparing different languages or language varieties (e.g., Escudero, 
Boersma, Rauber & Bion, 2009 for Brazilian and European Portuguese; 
Fox & Jacewicz, 2009 for American English; Ferragne & Pellegrino, 2010 
for British English), when we are analyzing sound change or socially 
conditioned varieties (e.g., Labov, 1963; Fabricius, 2002, 2007; de Jong, 
McDougall & Nolan, 2007; Harrington, Kleber & Reubold, 2007), or 
when looking at manifestations of the speaker’s individuality (e.g., Mc-
Dougall, 2006; Moos, 2012; or Fejlová, Lukeš & Skarnitzl, 2013 for Czech).

The appeal of vowel formants for speech scientists is understandable, 
given their intuitive character and transparency on multiple levels. Us-
ing only two values – that of F1 and F2 – we are typically able to distinguish 
all vowels of a language or a language variety. Moreover, when plotted in 
a conventional two-dimensional chart, formant values correspond to the 
articulatory settings of the tongue.

1 The authors would like to thank Alžběta Růžičková for her help with the manual labelling of 
vowel formants. This research was supported by the project GAČR 406/12/0298, by the Internal 
grants 2014 VG184 solved at the Faculty of Arts in Prague granted to the second author, and by the 
Programme of Scientific Areas Development at Charles University in Prague (PRVOUK), subsec-
tion 10 – Linguistics: Social Group Variation.
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Given their transparency and widespread use, then, it might seem 
misguided to relate vowel formants to complexity. However, while it is 
true that using formants for describing vowels is elegant and straight-
forward, formant analysis itself represents an inherently complex en-
deavour. This chapter thus addresses formant extraction – something 
that phoneticians do on a regular basis but rarely give this process much 
thought, because formant values are just a press of a button away in the 
most frequently used software packages for phonetic analysis. Although 
these software packages like Praat (Boersma & Weenink, 2014) or Wave-
Surfer (Sjölander & Beskow, 2005) do recommend “default” settings for 
formant extraction, which are clearly based on average vocal tract size of 
male and female speakers, these settings have not, to our best knowledge, 
been subjected to empirical examination. The aim of this chapter is 
therefore twofold. First, to compare a number of extraction settings in 
Praat and Snack (Sjölander, 2014; the implementation of formant analy-
sis in WaveSurfer) and to determine whether the default settings really 
do perform the best. The second aim is to compare the performance of 
Praat and Snack, since formant analysis as implemented in Praat has 
frequently been criticized as considerably worse than that in WaveSurfer.

9.2. Stipulating “ground truth”
Any attempts to compare the performance of algorithms and their set-
tings require a reference set of manually-labelled formant values, what 
has been called the “ground truth” by Deng, Cui, Pruvenok et al. (2006). 
Deng and his colleagues, in what to our knowledge is the only reference 
set of this kind, selected 538 utterances from the TIMIT database (Garo-
folo et al., 1993) and labelled F1–F3 in every 10-ms frame; in other words, 
they were interested in vocal tract resonances in all speech sounds, not 
only in vowels. Unfortunately, Deng et al. (2006) do not provide much de-
tail on how the manual measurements were conducted, especially what 
(if any) were the instructions given to the labellers. The labellers were 
simply asked to click with the mouse in the spectrogram where they be-
lieved the resonance to be located. The authors did test between-labeller 
variation on a subset of the utterances and reported the following abso-
lute deviations for vowel segments: 55 Hz for F1, 69 Hz for F2, and 84 Hz 
for F3. Although they mention that this was higher than expected, they 
did not follow up and give more detailed instructions to the labellers. 
Therefore, there was no attempt to resolve the inevitable inter-labeller 
discrepancies. Duckworth, McDougall, de Jong and Shockey (2011) did 
provide their labellers with a set of instructions on formant measure-
ment, but they still seem insufficient for our purposes. The aim of our 
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research was to prepare a more modest database of hand-labelled vowel 
formant values in Czech, but with more explicit guidelines for the label-
lers which included stipulating the “ground truth” for a given formant 
based on more than a single labeller.

9.2.1. Method

To obtain our “ground truth”, we analyzed 5 tokens of each of the 5 Czech 
short monophthongs /ι  ε  a  o  u/ from 10 native speakers of Czech (5 fe-
males, 5 males). In total, then, we worked with 250 vowel tokens. The 
values of vowel formants (F1–F3) were visually determined in the mid-
point of each vowel. The vowels were analyzed in Praat by two pairs of 
labellers; in other words, F1–F3 for every vowel were identified by two la-
bellers. The complete dataset from this stage thus comprised 1,500 read-
ings (250 vowels × 3 formants × 2 labellers).

The guidelines given to the labellers concerned two areas: viewing 
the speech signal (spectrogram) in Praat, and identifying the formant 
values. With respect to the first area, the Praat Edit window was al-
ways maximized on the computer screen, the viewing range was set to 
0–3 kHz for male voices and 0–3.5 kHz for female voices. The most impor-
tant setting was the length of the analysis window: we opted for a win-
dow length of 10 ms, between the traditional wideband spectrogram 
with a 5-ms window and narrowband spectrogram with a 30-ms window. 
The reading of formant values was to be based primarily on information 
available in the spectrogram – by default, the formant contours in Praat 
were not displayed, and the instruction could be summarized as “keep 
clicking until the cursor is visually located in the centre of the formant”. 
When a formant was not clearly visible or when there were competing 
spectral peaks, the labellers were allowed to turn on the display of for-
mant contours in Praat (the default settings were used for female and 
male speakers), or to visualize the FFT spectrum of the target vowel. All 
these possibilities are illustrated in Figure 9–1.
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Figure 9–1: Illustration of the alternatives for reading formant values: a. the default option based 
only on spectrogram information; b. with formant contours visualized; c. using the FFT spectrum 
of the target vowel.

9.2.2. Results

The first step was to simply compare the manual measurements of the 
two labellers. In Table 9–1, we can see that mean absolute deviations are 
comparable with those reported by Deng et al. (2006), only that of F2 is 
considerably lower in our data. The table also indicates how large the de-
viations were. Out of the 750 measurements, the two labellers deviated 
by less than 30 Hz in 583 cases; on the other hand, the deviation exceed-
ed 150 Hz in 23 cases, most frequently for F3.
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 MAD > 30 Hz > 50 Hz > 100 Hz > 150 Hz

F1 50.8 Hz 46 22 8 3

F2 49.3 Hz 57 39 14 5

F3 83.6 Hz 64 46 24 15

Table 9–1: Mean absolute difference (MAD) of formant values between the two labellers, and the 
number of deviations exceeding 30, 50, 100 and 150 Hz.

We decided to analyze the 46 items where the labellers differed in their 
readings by more than 100 Hz together and tried to reach consensus. It 
transpired that in some of the cases (especially those where the differ-
ence concerned F1 or F2) one of the labellers misidentified a vowel for-
mant with a nasal formant. The analyzed vowels in our research did not 
appear before nasal consonants, but some did appear after a nasal con-
sonant. We did not expect the effect of progressive nasalization to per-
sist in the midpoint of the post-nasal vowel but in several cases it did. 
The situation was more complicated in some of the F3 items but, in the 
end, consensus was reached for most (but not all) items. Table 9–2 shows 
mean deviations and the magnitude of the deviations after the correc-
tions have been made.

 MAD > 30 Hz > 50 Hz > 100 Hz > 150 Hz

F1 29.0 Hz 37 12 0 0

F2 29.1 Hz 47 25 0 0

F3 32.9 Hz 55 26 1 1

Table 9–2: Mean absolute difference (MAD) of formant values between the two labellers, and the 
number of deviations exceeding 30, 50, 100 and 150 Hz; after corrections (see text).

A mean absolute difference of around 30 Hz was considered a more ac-
ceptable deviation – it is far superior to the results reported by Duck-
worth et al. (2011), for instance – and we could therefore proceed with 
the final step of stipulating the “ground truth” formant values, which 
were calculated by simply averaging the pair of corrected values from the 
two labellers. These are the values which were subsequently compared 
with the automatically extracted values in Praat and Snack under differ-
ent settings. However, before we turn to this comparison, we would like 
to continue discussing manual formant measurement from a different, 
and very important perspective.
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9.3. Uncertainty of “ground truth”
Every measurement is affected by some degree of uncertainty. In this 
section, we try to uncover the most important causes of random biases 
influencing the final measured value, and estimate the size of their ef-
fect. Let us focus on the following problems connected with manually 
determined formant values from the spectrogram:

– resolution of the screen and mouse,
– spectrogram resolution,
– estimation of formant frequency as the darkest line produced by 

smoothing of harmonics,
– between-labeller variability.

9.3.1. Screen and mouse resolution

Although the frequency cursor in the spectrogram shows values with 
round off to units of hertz (see Figure 9–1a), the frequency range of 0–3 or 
3.5 kHz occupies only a small fraction of the screen resolution, and there-
fore the screen and mouse resolution limits the possible values to discrete 
states with a much larger spacing. A sample histogram of obtained values 
by one labeller is depicted in Figure 9–2; it would not be possible, for ex-
ample, to “measure” 400 Hz. The steps between the bins are not identical, 
but the approximate distance is 24 Hz, which we can assume to be a firm 
estimate of the resolution of the values caused by the screen and mouse.

Figure 9–2: A sample histogram of all female F1 values below 600 Hz manually measured by one 
labeller. The distribution is discrete with the step not being equal but approximately 24 Hz.
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9.3.2. Spectrogram resolution

After addressing the question as to how precisely one can read a frequen-
cy value from the screen, the very source of the displayed information, 
i.e. the spectrogram resolution, should also be investigated. The spectral 
domain always involves a compromise between time and frequency reso-
lution: the rougher the time resolution, the better the frequency resolu-
tion. With our segment of 10 ms (cf. section 9.2.1), the standard distance 
between frequency bins in an FFT spectrum is Δf = 1 / 10 ms = 100 Hz. The 
process of spectrogram computation uses the trick called zero padding, 
which artificially increases the duration of a segment by appending ex-
tra zero samples. Zero padding does not allow any additional useful in-
formation to be extracted from the measured signal, but it does result in 
a finer spectral resolution; however, in fact, the impact of this operation 
leads to the uncovering of the windowing effect known as spectral leak-
age. Each harmonic in the original signal convolves with the spectrum 
of the segmentation window, which consists of the main lobe (centred 
at the position of the original harmonic) and sidelobes. Since the speech 
signal contains a lot of harmonics, the resulting spectrum is a mixture 
of these convolved components. The default rectangular window (see 
Figure 9–3a) has a relative width of the main lobe equal to Δf, which is 
the best possible value among window functions, but it has the worst 
peak level of the sidelobes (Oppenheim, Schafer & Buck, 1999). To at-
tenuate the sidelobes, other windows with higher relative width of the 
main lobe (such as Praat default Gaussian window; Harris, 1978) are used 
in spectral analysis (see Figure 9–3 b). For that reason, even with a finer 
resolution of the FFT of a zero-padded segment, two harmonics which 
are closer together than Δf cannot be correctly discerned.

Figure 9–3: Main lobe and sidelobes of a. Rectangular window, b. Gaussian window.
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However, even for harmonics with larger values, distortion of the 
spectrum caused by the summation of the main lobe together with the 
sidelobes of other harmonics still exists, leading to an inaccurate meas-
urement of spectral peak positions, as illustrated in Figure 9–4. Fortu-
nately, formant measurement does not need the display of all the har-
monics; rather, what we are analyzing is spectral envelope peaks. Still, 
the uncertainty of frequency peak measurement in a short signal seg-
ment should be taken into account. It is difficult to estimate the resolu-
tion of the mean spectral envelope position because it ranges from a few 
hertz to one hundred hertz in the four examples depicted in the figure, 
depending on f0. For the purpose of this chapter, let us assume the spec-
trogram resolution to be approximately 30 Hz.

Figure 9–4: Spectral leakage effect mixing main lobes with sidelobes leads to inaccurate spectral 
peaks position. A 10-ms signal segment multiplied by the Gaussian window (Praat default) padded 
with extra 625 ms of zero samples leading to frequency resolution of 1 / 635 ms = 1.57 Hz. All four 
examples consist of an artificial signal with five sine waves simulating f0 and four additional 
harmonics (with integer multiples of f0 frequency). a. f0 = 80 Hz, main lobes are so close together 
that only four peaks are present in the spectrum (58 Hz, 181 Hz, 292 Hz, 417 Hz). b. f0 = 100 Hz, five 
main peaks (61 Hz, 178 Hz, 289 Hz, 401 Hz, 523 Hz). c. f0 = 120 Hz, five main peaks (106 Hz, 232 Hz, 
354 Hz, 477 Hz, 607 Hz). d. f0 = 200 Hz, six main peaks (52 Hz, 169 Hz, 381 Hz, 591 Hz, 801 Hz, 
1017 Hz), the first peak is an artefact of the summation of sidelobes.

6.3.3. Formant frequency estimation

When stipulating our ground truth, that is, manually determined for-
mant values, formant frequencies cannot be measured directly. A for-
mant can only be estimated from the speech signal (which is the convo-
lution of glottal pulses and the vocal tract response) as the dark line in 
the spectrogram (i.e., a peak of an average envelope created by harmon-
ics). Although the resonance frequency of the vocal tract (the formant 
frequency) may be constant, the position of the dark line will change 
even with small changes of f0. We have modelled this situation using 
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PSOLA (pitch-synchronized overlap and add, Moulines & Charpentier, 
1990) algorithm in Praat where f0 frequency was manipulated, while for-
mant frequencies were kept constant. Then, two labellers were asked to 
estimate the frequency of F1 and F2 from the signal. Both agreed on the 
same values, with the maximum difference in the visual estimates being 
around 10 Hz for F1 and 30 Hz for F2. However, the formant values them-
selves shifted by 80 Hz, both for F1 and F2, depending on the magnitude 
of change of f0. We have to realize that formant values should, theoreti-
cally, stay the same and not be affected by f0 changes. This means that 
we can assume the uncertainty component resulting from estimating 
formants from the spectrogram to be approximately 80 Hz.

9.3.4. Uncertainty factors combined

After between-labeller variation was reduced by the consensus correc-
tions mentioned in section 9.2.2, the mean difference between two la-
bellers was approximately 30 Hz for all formants (F1, F2, and F3). This 
resolution constitutes the fourth component of the uncertainty estimate.

All these four types of uncertainty can be marked as “type B” evalua-
tions – uncertainty estimated from information other than using repeat-
ed readings and statistics, i.e. estimated from past experience, calibra-
tion, calculations, common sense etc. (Bell, 2001). Assuming a uniform 
distribution of these four factors, the estimate of an expanded combined 
standard uncertainty using the coverage factor 2 to give a 95% confidence 
level is:

2 × ±54 Hz.+ + + =�
3�

24/2 2

3�
30/2 2

3�
80/2 2

3�
30/2 2

This estimate, based on the inaccuracies assumed in sections 9.3.1–9.3.3, 
should be regarded only as a rough indication of the uncertainty of man-
ual formant measurement from the spectrogram. When performing 
manual formant measurement, one must therefore keep in mind that 
the actual formant values may lie in the range of approximately ±54 Hz 
around the manually determined value at the 0.05 level of significance.

9.4. Performance of Praat and Snack
Having determined the “ground truth” and discussed the inaccuracies 
inevitably related to it, our next aim was to compare the manually meas-
ured formant values with the performance of two software tools which 
extract formant frequencies automatically – Praat and Snack. Both Praat 
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and Snack use linear predictive coding (LPC) to locate formants, but em-
ploy different methods of estimating the coefficients. In order to find 
an optimal setting, i.e. one whose output will be closest to our ground 
truth, we manipulated two parameters. First, it was the order of LPC, 
which determines the number of formants (n) which are detected, with 
the order equal to 2n. The second varied parameter was the maximum fre-
quency at which the n-th formant could be detected. We did not change 
the pre-emphasis value from that set as default (but see Harrison, 2004). 
We will present results for Praat first and then compare them with those 
for Snack.

9.4.1. Praat measurements

The default settings for formant extraction in Praat order are 10th order 
LPC, which means that 5 formants are detected, in the 0–5 kHz range 
in male voices and in the 0–5.5 kHz range in female voices. We varied 
LPC order between 6 and 12, with the maximum frequency of a formant 
being set to 5,000 Hz or 5,500 Hz, according to the above-mentioned de-
fault settings for male and female speakers. For each vowel token, we 
thus tested 14 different settings in total: LPC6 – 3000 Hz, LPC6 – 3300 Hz, 
LPC7 – 3000 Hz, LPC7 – 3300 Hz, LPC8 – 5000 Hz, LPC8 – 5500 Hz, LPC9 – 
5000 Hz, LPC9 – 5500 Hz, LPC10 – 5000 Hz, LPC10 – 5500 Hz, LPC11 – 
5000 Hz, LPC11 – 5500 Hz, LPC12 – 5000 Hz, and LPC12 – 5500 Hz. Since 
the first four settings, where the maximum frequency of a formant was 
either 3000 or 3300 Hz, frequently yielded undefined values (especially 
of F3), these settings were disregarded from further analyses. The subse-
quent comparisons are therefore based on the remaining 10 settings (LPC 
orders 8–12, formant detection in the 0–5 or 0–5.5 kHz range).

The performance of Praat, separately for male and female speakers, 
for all three formants (F1–F3) is illustrated in Figure 9–5, which assesses it 
by means of deviation (in Hz) of the automatically measured value from 
the manually determined ground truth for all 10 settings mentioned 
above. Taking a look at the whole picture, it is clear that there is huge 
variability in how the individual settings perform: for example, devia-
tions for F3 range from below 100 Hz to 800 Hz. The result of the default 
setting for the given gender is always marked with slanted lines, and 
we can see that it performs considerably well in all cases. Yet, a closer 
look reveals that there are settings which perform systematically, albeit 
slightly better than the default one, namely LPC9 in the 0–5 kHz range 
for female speakers and LPC11 in the 0–5.5 kHz range for male speakers.
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Figure 9–5: Deviations (in Hz) of automatically measured formant values (F1–F3) in Praat from 
ground truth for male and female speakers, using 10 different formant extraction settings (LPC 
order 8–12, maximum frequency 5 or 5.5 kHz). The default setting is marked by slanted lines.

In the case of F1, the improvement is, in fact, negligible: the two settings 
yield the same deviation from ground truth for female speakers, and the 
difference is merely 2 Hz for male speakers. The differences between 
the two settings are similarly small also for F2 (6 and 4 Hz for female 
and male speakers, respectively). The default setting is outperformed to 
a greatest extent in the case of F3, where the improvement comprises 
29 Hz for female speakers and 13 Hz for male speakers. However, consid-
ering the uncertainties of manual measurement discussed in section 9.3, 
the improvement of our “superior” settings over the default settings is in 
fact negligible.

So far, we have been presenting the results in terms of the mean 
deviation of the extracted values from ground truth, primarily due to its 
intuitive character. Nevertheless, it is preferable, when comparing the 
performance of algorithms, to use root-mean-square deviation (RMSD) 
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instead of mean deviation, as the RMSD represents the sample standard 
deviation of the differences. The mean deviation averages all deviations 
and larger differences thus get blurred. In contrast, RMSD “penalizes” 
such outliers more, and they become more visible. A comparison of the 
differences between ground truth on the one hand and the default and 
the slightly superior settings on the other hand as expressed by mean 
deviation (MD) and root-mean-square deviation (RMSD) is presented, for 
male speakers only, in Table 9–3.

males
F1 F2 F3

MD RMSD MD RMSD MD RMSD

LPC10-5kHz 50 69 39 58 81 142

LPC11-5.5kHz 48 65 35 48 68 107

Table 9–3: Comparison of the differences observed between ground truth and the default setting as 
well as ground truth and the slightly superior setting in Praat, expressed as mean deviation (MD) 
and root-mean-square deviation (RMSD) for F1–F3 of male speakers.

The table shows, on the one hand, that the two settings are largely com-
parable and, on the other hand, that the RMSD values are in all cases 
higher than the MD values (by the virtue of penalizing the outliers), and 
this difference is most pronounced for F3 measurements. Since RMSD re-
flects the performance of an algorithm more reliably, it will be employed 
also in the following evaluations.

9.4.2. Snack measurements

The second software tool which was tested in this study was Snack, 
which is implemented in the well-known WaveSurfer or more recently 
also in VoiceSauce (Shue, 2013). We can conclude from a number of in-
formal discussions among phoneticians from various countries that it is 
commonly believed that formant analysis performed by Snack is superior 
to the one implemented in Praat. We were therefore especially interested 
in the comparison of our ground truth with automatically extracted for-
mant values in Snack.

In total, 12 different settings were tested: both for autocorrelation 
and stabilized covariance, the LPC order was varied from 10 to 12, the 
maximum frequency being set to 5 or 5.5 kHz.

The setting of Snack which performed the best results, i.e. closest to 
our ground truth as quantified by RMSD, was the default autocorrelation, 
using LPC12 and the maximum frequency for formant detection being 
5 kHz (lower LPC orders performed significantly worse). In order to as-
sess the performance of Praat and Snack, this setting was compared with 
the default setting in Praat (for male and female speakers separately), as 
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well as with the slightly superior setting discussed in the previous sec-
tion. The deviations of the three methods from ground truth are plotted 
in Figure 9–6.

Figure 9–6: Root-mean-square deviations of automatic formant measurements (F1–F3) by the Praat 
default setting, a slightly superior Praat setting, and Snack for male and female speakers.

The chart revealed that Snack was considerably worse in all instances, 
which was rather unexpected given the fact that Snack is, as already 
mentioned, generally considered to be superior in formant estimation 
than Praat.

There is another factor worth mentioning in relation to formant analysis 
in Snack. Table 9–4 shows the comparison of four settings in Snack with 
ground truth. We can see that extraction in the 0–5.5 kHz range is sig-
nificantly worse than in the 0–5 kHz range, especially for male speakers. 
It thus appears that it is the autocorrelation vs. covariance setting which 
differentiates the most successful setting for male and female speakers, 
with autocorrelation performing best in females and covariance in males.

females males

F1 F2 F3 F1 F2 F3

LPC12 – 5 kHz – autocorrelation 94 197 274 162 260 384

LPC12 – 5.5 kHz – autocorrelation 147 194 314 180 427 416

LPC12 – 5 kHz – covariance 134 219 303 140 177 263

LPC12 – 5.5kHz – covariance 154 249 315 131 243 406

Table 9–4: Root-mean-square deviation (in Hz) of several extraction settings in Snack from 
manually stipulated ground truth for female and male speakers.
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9.4.3. Praat tracker

The result of the comparison of Praat and Snack is all the more surprising 
considering their differences in the nature of formant estimation – while 
the default method of formant analysis in Praat is formant extraction, 
Snack employs formant tracking. The process of formant extraction in-
volves a simple search for the most probably value of a formant in each 
consecutive frame. Theoretically, then, values of neighbouring formants 
might yield smaller or larger jumps, i.e. they might not be “neighbour-
ing” (in terms of frequency) at all. In contrast, formant tracking takes 
context into account: it can be described as finding the cheapest path 
through neighbouring formant values. In other words, formant tracking 
tries to prevent large frequency jumps from one frame to the next, which 
is typically done by means of the Viterbi algorithm (Viterbi, 1967).

Though the default – and recommended – way of estimating formant 
frequencies in Praat is formant extraction as mentioned above, there is 
a tracker implemented in Praat. Since it is suggested by the authors in Praat 
manual that formant tracking should be used only for vowel and vocoids, 
our aim was to examine whether formant tracks can be used on our mate-
rial so that the performance of Praat (extractor), Snack (tracker) and Praat 
(tracker) can be assessed. The Praat tracker requires reference formant val-
ues, which have been specified as odd multiples of 500 Hz for male speak-
ers and of 550 Hz for female speakers (i.e., 550 Hz for F1, 1650 Hz for F2 
etc.). As the input, the tracker typically uses formant estimates for five 
formants, from which it extracts three tracks (i.e., the track of F1–F3). Ob-
viously, this poses limitations on the settings we could vary in our experi-
ment: we examined the same six settings as in the case of Snack, i.e. LPC 
order 10–12 and the maximum frequency of a formant 5 or 5.5 kHz. The 
setting performing best – that is, showing the lowest RMSD from ground 
truth – was then compared with the best setting in Praat extractor (Snack 
was omitted from the comparison, as it was outperformed by Praat).

Figure 9–7: Root-mean-square deviation (in Hz) of a Praat superior setting (LPC9, maximum 
frequency 5 kHz) and the best Praat tracker setting from manually stipulated ground truth for 
female and male speakers.
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The outcome of the comparison is illustrated in Figure 9–7, which 
shows that the best setting of the Praat tracker is comparable with our 
superior setting of the Praat extractor with the exception of F3 in male 
speakers, where the tracker performs significantly worse. The reason for 
this discrepancy is not clear.

9.5. Discussion and conclusion
This chapter addressed the complexities of vowel formant extraction. Al-
though extracting formant values is a simple enough task in the most fre-
quently used software packages for phonetic analyses, in the sense that 
just a few clicks of the mouse will produce the requested values, we have 
shown in this chapter that formant analysis is, indeed, a considerably 
complex endeavour. In the introduction, we mentioned the transparent 
relationship between vowel articulation and acoustics: when depicted 
in the vowel quadrilateral, the tongue positions correspond to formant 
values. However, the result of our experiment presented in section 9.3.3, 
where manipulations of f0 led to markedly different estimates of vowel 
formants, shows that even this articulatory-to-acoustic mapping – the 
position of the tongue and the lips and the corresponding resonance fre-
quencies of the vocal tract – is more complex than one might assume. 
Simply said, when one “digs deeper”, the complexity of speech manifests 
itself even in seemingly straightforward relationships.

The objectives of this chapter were to test the performance of default 
settings in Praat and Snack vis-à-vis a number of settings which are possi-
ble (and feasible) in these programmes, and to compare the performance 
of these two analysis tools with each other. The first step consisted in the 
manual identification of formant values; although this “ground truth” 
is inherently associated with measurement uncertainty (see section 9.3), 
our consistency was much higher than that reported by Duckworth et al. 
(2011), possibly thanks to the more detailed instructions given to the la-
bellers. The following step was to compare the manually determined and 
automatically extracted formant values. Surprisingly – at least given the 
frequent criticism of formant analysis in Praat – Praat turned out to be 
significantly superior to Snack, especially in the case of F2 for both gen-
ders. One may argue that this result may be due to the fact that the man-
ual “ground truth” measurements were performed in Praat, and hence 
the deviation of Praat is predictably lower than that of Snack. However, 
let us repeat that a great majority of the ground truth values were ob-
tained simply by visual identification in the spectrogram, without as-
sistance from the Praat formant extractor. This could therefore not have 
given Praat an “edge” in the subsequent comparisons; the spectrogram 
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would have been the same in any software tool. We also used the for-
mant tracker embedded in Praat and compared the results with ground 
truth; however, the application of the tracker did not lead to consistent 
improvements.

Some researchers have also suggested that it might be advisable to 
use vowel-specific settings for formant extraction, since spectra of in-
dividual vowel qualities look very differently. Harrison and Clermont 
(2012) showed that automatic formant estimation in Praat is more accu-
rate with a different LPC order for close, mid and open vowels: the de-
fault setting (LPC10) turned out to be most successful for mid vowels like 
[e o], while the 12th-order LPC was best for close vowels like [i u] and the 
8th-order LPC for open vowels like [a]. Indeed, given the spectral differences 
between the vowels, this seems to be intuitive. Nevertheless, the results 
of our analyses (formant extraction in Praat) do not support this appeal-
ing hypothesis: vowel-specific settings such as those reported by Harri-
son and Clermont (2012) did not lead to lower deviations from the ground 
truth values in our data. Based on the analyses of our limited dataset, we 
may therefore recommend the following settings for formant analysis in 
Praat, regardless of vowel quality: 9th-order LPC with extraction in the 
0–5 kHz range for female speakers (i.e., the number of formants to be 
detected is set to 4.5 in Praat), and 11th-order LPC in the 0–5.5 kHz range 
for male speakers (the number of formants is set to 5.5). However, given 
the uncertainty associated with the manual measurement, the differ-
ence approaches significance only in the case of F3.

We would like to raise one more point. It must be kept in mind that 
our analyses were based on high-quality studio recordings, although the 
speech itself was comparatively natural. It is possible, and our prelimi-
nary analyses appear to support this hypothesis, that the performance of 
Snack might improve relative to that of Praat in recordings which feature 
degraded acoustic conditions, for instance background noise or mobile 
phone transmission.
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